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AklraeL The boundary problems of the widely used clusler method for cryslal mm- 
putations have been investigated, and pmblents in the cluster calculations of partial 
ionic uystals were atlribuled to the charge-transfer problem. The proposed solution, the 
charge-transfer method. applied to ZnSe and ZnS systems. obtained mul ls  compara- 
ble to lhe band-slruclure calculations for the distributions of the densily of stales, the 
energy gaps and the bonding strengths even for Lhe smallest cluster and showed small 
size effects, which wercame one of the largest deficiencies of the cluster methods. The 
influences of lhe charge lransfer on the distribulions of the density of stales were also 
diwussed. The results indicalcd that the charge-transfer problem is an important factor 
that should be considered in lhe cluster imitation of panial ionic crystals. 

1. Introduction 

In the past decade, the cluster method has been widely used to calculate the localized 
structure in a crystal. It has shown some success, such as a substitutional transition 
metal (TM) in semiconductors (Hemstrcct 1977, 1980, Hemstreet and Dimmock 1979, 
Fazzio and k i t e  1980). In contrast to the Green function technique (Baraff and 
Schluter 1979), the cluster calculation is simplcr and more efficient. It is powerhl for 
strongly localized states such as 3d TM impurities, which need an enormous amount 
of computation in the Green function method (Zunger and Lindefelt 1983). 

However, the existing cluster approaches have a number of distinct drawbacks 
(Pantelides 1986): (i) convergence of results with cluster size is usually poor (size 
effect), so that the results are sensitive to the cluster boundary conditions; (ii) it is 
difficult to determine the precise energy positions of bound states in the gap since 
the latter, being a bulk property, is not described well by a small cluster; and (iii) it 
is difficult to get an adequate description of changes occurring in the band continua 
(resonances and anti-resonances) since the continua are replaced by a set of discrete 
levels. These drawbacks stem from the disruption of wavefunctions at the cluster 
boundary, which causes two problems: the dangling-bond problem and the charge- 
transfer problem. 
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There have been two methods proposed to eliminate the dangling-bond effect; one 
is the hydrogen-terminated method. This method has often been adopted for covalent 
semiconductors such as Si (Hemstreet 1977, 1980, Hemstreet and Dimmock 1979, 
DeLeo et QI 1981, 1982a,b), but it is not certain whether this method is applicable 
to 11-VI or 111-V semiconductors. Even in the system of Si to which this method is 
most successfully applied, ambiguity exists in choosing the distance between Si and 
H, and this influences significantly the convergence of numerical calculations of the 
energy levels (DeLeo et al 1982a). The other method is the sp3-terminated method 
proposed by Gemma (1984) for 11-VI and 111-V semiconductors. This method has 
the demerit of the insuficiency of orthogonality conditions (Mtanabe and Kamimura 
1987). But by using strongly localized atomic basis functions, this effect is negligible. 

The charge-transfer problem, which is implicit in the normalization property of 
the formalism in the cluster method, is not solved yet. However, it has a large 
influence, and sometimes even leads to unreasonable results for a non-neutral cluster 
(Guo and Ellis 1985, Watanabe and Kamimura 1987, He and Huang 1989). The 
size effect on the gap and the wrong distributions of the density of states (DOS) are 
attributed to this deficiency. I n  addition in th i s  problem, there is the problem of 
imitating the Madelung potential crcatcd by the crystal environment, which is called 
the environmental potential in this paper. 

Bukada (1980) proposed a mcthod to attack the environmental potential problem. 
His method partly canccllcd thc charge accumulation at the boundary, but the charge 
distribution near the boundary is distorted. 

A method of solving the charge-transfer and environmental potential problems 
simultaneously is proposcd in this paper. It will be presented as follows. I n  section 2, 
the discrete variational method combined with the self-consistent charge (DVM-SCC) 
cluster method is reviewed and the origins of the boundary problems are analysed. 
Then, the solution to the charge-transfer problem, the charge-transfer method, is 
suggested in section 3 and applied to ZnSc and ZnS systems in section 5. The results 
are discussed from the points of view of the chemical trend. the size effect, the charge 
transfer and the impurity calculation. The calculation conditions and the definitions 
of various clusters are given in section 4. Conclusions arc obtained in section 6. 

2. Discrete variational methodlself-consistent charge cluster method and the origin 
of boundary problems 

The discrete variational method (DVM) (Ellis and Painter 1970) combincd with the 
self-consistent charge (SCC) method (Zunger and Freeman 1977) greatly simplifies 
the application of the linear combination of atomic orbitals (LCAO) method and saves 
a lot of computer time. The suggestcd mcthod is implemented on the basis of the 
above two approximations. 

2.1. DW-SCC cluster nielhod 

In the LCAO method, the wavelunctions of the cluster or molccular orbitals are a 
linear combination of a set of atomic orbitals. The atomic orbitals yLlm(r) are 
obtained by solving the atomic local density functional (LDF) equation in this paper 
(Hohenberg and Kohn 1964, Kohn and Sham 1965): 
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where 2, denotes the nuclear charge. In (2.1), Vxc[p8(~)] is the exchange-correlation 
potential. The charge density p , ( r )  is defined by 

PJ.1 = C f ~ l , , ~ ~ I , ( T ) ~ : , l n r ( T )  (2.2) 
OQ 

where fifm is the occupation number of nlni atomic orbital. 
To exploit the symmetry properties of the cluster, nlm atomic orbitals of pth- 

shell atoms are combined as the symmetrized 6th 1' irreducible representation basis 
function @inlb(v): 

where the sum over s is taken over the atoms of the pth shell. 

basis functions @inlb(~): Molecular orbital Q y  is expressed as the linear combination of the symmetrized 

Qr(7) = C[p,,*@;n,*(~) 
p,n, l .b  .. 

and governed by the LDF equation in the cluster: 

with H ( r ) Q f ( v )  = E r Q y ( r ) .  Here Z,, denotes the nuclear charge of the atom in 
the cluster at the site Et,,,; \Cut(7) is the environmental potential created by the ions 
outside the cluster. The charge density in the cluster is 

where fr is the occupation number of ri molecular orbital. 

ing linear secular equation: 
Variation over the combination coellicients in equation (2.4) resul6 in the follow- 

~ ( x ~ , n , l , b r , p n l b  - ~ ~ o ~ ' n ' l ' l ' , ~ ~ n l l ) C [ p n ' p n l b  = (27) 
pnlb 

where H&,f,6,,pn16 is the Hamiltonian matrix element and O~,n j l , b , , pn lb  is the Over- 
lap ma tm element: 

With the above formalism, in principle, the self-consistent field calculation can be 
performed. 

The SCC method makes the spherical approximation of the charge density in 
equation (2.6) to simplify the integration in solving e+ interactions. The charge 
density p has the following form: 
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where f:f(ri) is the projected occupation number of the T i  molecular orbital on nl 
atomic orbital. 'lb realize this approximation, the overlapping charge density among 
atoms in the cluster is divided among each atomic orbital by the normalized Mulliken 
population analysis formula: 

where k is short for p n l b  and N ,  is the number of atoms in the pth shell. 
The Dvhi simplifies the multicentrc integrations in equations (2.8) and (2.9) as 

the summation over a set of pseudo-random integration sampling points ( r i }  with 
weight {IY(r;)): 

H ~ ~ ~ ~ ~ , ~ , , ~ ~ ~ ~  = ~ ( ~ ~ ) ~ ) ~ " f 6 ( ~ . ~ ) ~ ~ ( r ; ) ~ ) ~ , ~ , f , 6 , ( r , )  (2.12) 
i 

o;,",f,*,,,"f* = w ( ~ ; ) ~ l ~ ~ ~ f * ( r ; ) ~ ~ ~ ~ " , f , 6 , ( ~ ; ) .  (2.13) 
i 

2.2. The origin of the boundary probicni 

An ideal crystal is an infinite cluster. However, only a finite-size secular equation can 
be solved or a finite-size cluster, which neglects the interaction between atoms in the 
cluster and the atoms outside the cluster, can be studied. 

For some covalent crystals, the linite cluster approximation gives rise to a seri- 
ous dangling-bond problem, since the covdlcnt bonds are formed by the sharing of 
electrons, or the mixing and hybridization of valence orbitals, which form the lower- 
energy bonding states and higher-cncrgy antibonding states. Dangling bonds usually 
form electronic states within the band gap where the impurity states of interest are 
located. Various terminating methds have to be employed. 

For the complete ionic crystal, both the dangling bonds and charge transfer are 
not serious problems, since the ionic bonds are Cormed by the transfer of electrons. 
Nevertheless, for the ionic crystal with partial covalency such as 11-VI semiconductors, 
the charge-transfer problem emerges from the calculation method. In the past, the 
total number of valence electrom required in dcciding the occupied states in equation 
(2.6) is evaluated as if the atoms in thc cluster had complete valency, e.g. the Zn2+ 
and Sa- in ZnS. However, thc absolute valuc of the real valencies of the atoms 
in the partial ionic crystal is smaller than the complete valency owing to covalency. 
The past method results in the overcounting of the net charges for the non-neutral 
cluster, while the normalization property of the wavefunctions in equation (2.4) and 
the conselvative character of the population analysis formula (2.11) make the extra 
electrons due to the partial covalency closed in the cluster. Since the total ionicity of 
the cluster should be completely cancelled by the ionicity of environmental embedding 
atoms, the ionicity of embedding atoms is also overcounted. This is the so-called 
charge-transfer problem. I t  causes an unreasonable distribution of density of states 
and always results in a larger band gap and distorted effective charges for the atoms 
in the cluster. 
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3. The charge-transfer cluster method 

Knowing the origin of the boundary problem, we can find a possible way to cure this 
deficiency. The 11-VI semiconductors ZnS and ZnSe wilrbe used as cases to test our 
method 

Let us first look at the charge distribution in the crystal. ZnS and ZnSe are in the 
zincblende structure. There are one Zn and one S (or Se) in the unit cell. The net 
charge of the unit cell is zero, so the effective charge of the cation (+q)  should be 
cancelled completely by the effective charge of the anion ( - q ) .  On the other hand, 
all anions are equivalent and all cations are equivalent; the charge distribution for 
anions must be the same, so are the cations. 

In the cluster method, the atoms of a cluster are chosen according to their 
distances from a central atom in order to kcep the local symmetry of the crystal. The 
atom in the cluster form several shells in the order of their distances to the cluster 
centre. For the zincblende structurc, thcre arc one central cation (Zn), four first- 
shell anions (S or Se), 12 second-shcll cations, 12 third-shell anions, six fourth-shell 
cations, 12 fifth-shell anions and 12 sixth-shell cations, etc. The smallest cluster for 
this structure is (Zn,A,)6-, which has -G  net chargc. By choosing a different shell, 
the cluster (nA,,)Q-, with ditferent net chargc Q ,  can be fabricated: 

Q n  = C N v Q ,  (3.1) 
i 

where Ni is the number of atoms in the i t h  shell and Qi is the valence charge of the 
atom in the i th  shell, which is +2 [or Zn and -2 Cor S and Se in the ideal case. The 
environmental potentials arc obtained by the summation of the Coulomb potential 
over a large enough point ionic lattice of chargc Q, outside the cluster: 

(3.2) 

The charge-transfer cluster method divides the cluster into inner atoms and 
boundary atoms ( n A N , ) , ( n A N , ) B .  The method described in section 2 is used 
to calculate the electronic states of the entire cluster. Upon forming the potential, 
the charge distributions of the boundary atoms are replaced by the charge distribution 
of the same species of inner atoms, callcd the reference atom r. This kind of setting 
ensures similar charge distributions for the same species of atoms like the situation 
for them in the crystal. The charge diffcrenccs bctwcen the boundary atoms and the  
corresponding reference atoms are the charge transfers at the boundary. Since the 
ground-state propcrties of the material are uniquely determined by the ground-state 
charge density, the right charge density should give the right ground-state proper- 
ties. Now, however, owing to the charge transfer, the net charge of the cluster, Q;, 
becomes 

(3.3) 

where N, is the number of boundary atoms at the bth boundary shell and Q; the 
valence charge of the corresponding rcfercnce atom r. The environmental potential 
must also be adjusted to satisry the neutral condition of the crystal: 

(3.4) 
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By the above method, thc sell-consistent calculation of the cnvirnnmental potential 
and the transfer of electrons at the cluster boundary can be achieved simultaneously. 

Cluster calculations can only give energy levels other than energy bands. Com- 
parison of cluster results with the band structures of the crystal is by total dcnsity of 
states ("Dos) and partial density of states (PDOS), which are yielded in this paper by 
broadening the levels with a Lorentz profile of broadening coefficient y and reduce 
the unit to Dos/(eV unit cell): 

4. Calculation models and conditions 

The electronic states of five kinds of clusters are calculated by the charge-transfer 
(CT) cluster method, which will be abbreviated as: cluster A, (Znl,Se,,),(Zn1,Sel,),; 
cluster B, (Zn,,S,,),(Zn,?S,?)D; cluster C, (Zn,Se,Zn,,,Se,,,),(Zn,Se,,),; cluster 
D, (Zn,Se,Zn,,,Se,,),(Zn,),; and cluster E, (Mn,Se,Zn,,,Se,,),(Zn,),. Here r 
denotes the refercnce atoms. Each cluster is emheddcd in an environmental potential 
produced by about 1963 point ionic lattices. 

Zn(3d,4s), Se(4s,4p), S(3s,3p) and Mn(3d,4s,4p) a re  treated as valence orbitals and 
the more tightly bound core orbitals are frozen under the frozen-core approximation. 
Considering that the  charge distributions of boundary atoms are replaced by that of 
reference atoms inside the cluster, they are not important, and only 4s of Zn, 4p 
of Se and 3p of S are treated as valence orbitals. To get a better numerical basis, 
a negative potential well is addcd when the atomic basis functions are calculated 
by equation (2.1). The Von Barth and Hcdin (1972) lormula is adopted to get the 
exchange-correlation potential in the LDF equations. The broadening coefficient -( in 
equation (3.5) is 1- x Hartrec. All figures in this paper are scaled to the Fermi 
level as the reference zero point, and thc peaks in the table are scaled to the highest 
occupied level. 

5. Results and discussion 

S.1. The chemical trend 

Figure 1 shows the calculated DOS distribution and energy lcvcls for ZnSe (cluster A) 
and ZnS (cluster B). The shape of the DOS shows very good similarity to the results 
of experiments (Ley et ai 1974) and calculations (Zeng and Huang 1988, Wang and 
Klein 1981). For the sake of comparison with the experiments, the peak notation in 
Ley et al's (1974) paper will be lollowed. 

For ZnSe, the lowest peak P,,, is mainly Se:4s (96.2%); then we have the Zn:3d 
peak, which lies completely below thc sp hybridization area beside the energy gap. 
Within the sp hybridization area of the  valencc band, three peaks corresponding to  
peaks PI,, S, and 1, can be recognizcd clcarly. The overall layouts of calculated 
PDOS agree very well with the band calculation results of the linear mulfin-tin orbital 
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(LMTo) method (Zeng and Huang 1988) and linear combination of Gaussian orbitals 
( E G O )  method (Wang and Klein 19S1). PI, are Iormed by sp hybridization, while S, 
and I, have more Se:4p character. 

For ZnS, the distributions of DOS are similar to that of ZnSe. But there are some 
more weak peaks within the sp hybridization area. These peaks will disappear when 
a larger broadening coefficient is used. So the results are still qualitatively very good. 

Table 1. The calculated peak positions, the energy gaps and sp bandwidtlls for clusters 
A and B in comparison wilii experimental resulls and calculated resulls (eV). 

P ~ t t  PI! S I  11 d Eg WSP 

Cluster A -11.73 -4.60 -1.79 -0.67 -7.39 2.34 5.29 
Expt a -13.1 -5.2 -2.6 -1.9 -9:20 2.82 5.6 
Expl a -13.7 -4.9 -2.7 -1.3 - - - 
unob -12.4 -4.72 - - -6.34 1.57 5.23 
LCGO' -11.83 -4.54 - - -6.70 1.83 5.15 

Clusler B -11.65 -4.65 -1.85 -0.73 -7.31 2.80 5.14 
Expt -12.4 -4.Y -3.2 -2.6 -9.03 3.80 5.5 
W O  b -12.1 -4.61 - - -6.40 2.4¶ 5.32 
LcGoc -11.97 -4.42 - - -6.40 2.26 5.20 

a Ley cl ol (1974). 

e Wang and Klein (1981). 

Quantitatively, thc results arc stili good. Table 1 lists the calculated results of 
peak positions, band gaps and sp band widths (I.V,,) in comparison to the results 
from experiments and band calculations. For the localized peaks, such as P,,,, d and 
lower peak PI,,  the agreement with the band calculations is very good. The Zn:3d 
peak is too high comparcd with the expcrimcntal results, which is often considered 
a deficiency of the LDF formalism rather than the calculation method itself, because 
there are the same phenomena in thc band calculations within LDF. In contrast to 

Zeng and Huang (1988). 

LI 
8 

v) 

; 

-15 -12 - 9  - 6  - 3  0 3 6 

LI D 

k 

-15 -12 -9 - 6  - 3  0 3 6 
Energy lev1 

Figure 1. The calculated 
DOS and PDOS distributions and 
energy levels for cluster A 
(ZnSe) and B (ZnS). The 
P w s  from lower to higher are 
Zn(centre):3d, Zn(centre):4s. 
A(1):s. A(I):p, Zn(b):4s and 
A(b):p. Here A means the an- 
ion atom Se or S and b is the 
boundaly atom. 
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the x-ray photoelectron spectroscopy (XPS) results, the SI and I, peaks are too high. 
One reason is that the energy levels of the cluster calculation are the average of the 
band structure; the highest occupied level is lower than the exact maximum of the 
valence band, which is the reference zero point of all peaks below the gap. If about 
0.7 e V  downward translation of energy is assumed for this factor, all peaks will fit well 
with experimental results. Similar to the LDF band calculations, the calculated energy 
gaps, restricted by the precision range of the LDF formalism for the semiconductor 
calculations, are about 20% smaller than the experimental values. But the calculated 
gaps are larger than that of the band-structure calculations because the energy levels 
of the cluster are the average of the band structure. The last parameter listed in 
table I is the width of the sp valence band, which is the mark of covalency of sp 
bonding. The 11-VI semiconductors have stronger ionicity than the 111-V and IV 
semiconductors. But there are still some sp3 hybridization bonding properties whose 
strength is measured by the width ol  the sp valence band. The calculated results 
agree well with the results from other sources, indicating that the bonding strengths 
in the CT calculation are appropriate. 

The overall chemical trend from ZnS to ZnSe shown in table 1 is right. Although 
the order of PI, peak is not consistent with the chemical trend, the experimental 
results for the energy difference of this peak between ZnS and ZnSe is only 0.3 eV 

The calculations on ZnSe by the past method show a very poor result compared 
with the experiment (He and Huang 19S9). The Zn:3d levels hybridize with the 
p levels of Se and sit'in the sp band. Even if thc charged cluster, which ignores 
the environmental potential, can gct thc DOS distribution without the overlapping 
of Zn:3d levels with the sp band, the pcak positions listed in table 2 are very poor 
compared with experiment. There is the same problem for ZnS (Guo and Ellis 1985). 
The old method cannot get the right DOS for ZnS and ZnSe. 

Table '2. The calculated puak porilions and cncrgy gaps by thc old method for cluster 
(MnlSe,Zn12), called old A, and charged cluslcr ( M n l S ~ Z n l ~ ) l s ' ,  called old B (ev). 

Cluster Pw PII PI  d E8 

Old A -9.73 -0.443 unrccognizcd -1.65 3.37 
Old U -9.85 -0.964 unrccognircd -3.83 4.40 

5.2 The size cfJececr 

The size effect, the crucial deficiency of the cluster method, greatly hindered the 
application of the cluster method to the calculations of crystals. Watanabe and 
Kamimura (1987) showed that the gaps are 7.25, 5.91 and 5.60 eV in 17-atom, 41- 
atom and 59-atom ZnS clusters respectively. 

Figure 2 shows the DOS and energy levels of cluster C, which has two more shells 
of atoms than cluster A. Except for the indistinguishable S, and I, peaks, the DOS 
structures are nearly the same as that of cluster A. The peak positions and band 
gaps listed in table 2 indicate a very small size effect and are consistent with the 
corresponding results for cluster A in table 1. 

For clusters D and E, which have one shell less boundary atoms than clusters 
A-C, the DOS structures in figure 3 have the  right distribution and not too bad peak 
positions listed in table 3 in comparison to clusters C and A. But the gaps seem too 
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g 

Flgurc 2. 'me calculated DOS and ? D M  distributions 
and energy levels for cluster C The PDM from 
lower 10 highcr are Zn(cenm):3d, Zn(cenlre):4s. 

-15 -12 - 9  - 6  -3 o 3 6 Se(1):4s, Sc(l):4p, Zn(2):3d, Zn(Z):4$ Se(3):4s. 
Sc(3):4p, Zn(b):4s and Se(b):4p. Energy lev1 

large and the sp band too narrow. We will scc in the next part that this is due to too 
few charges transferred. 

z e 

-15 -12 - 9  - 6  - 3  0 3 6 
-15 izzz2kd -12 - 9  - 6  - 3  0 3 ' 6 

Energy lev1 

Figurc 3. The calculated DOS and 
PDOS distributions and energy Iw- 
els [or clusters D and E The SDOS 
from lower to higher for cluster 
D are Zn(cenire):3d, Zn(centre):4s, 
Se(1):4s. Se(l):4p, Zn(Z):3d, Zn(2>4s, 
Se(3):4s, Se(3):4p and Zn(b):&. 
Tile YDOS Irom lower to higher 
for clusler E are Mn:3d, Mn:&, 
Mn:4p, Se(l):4s, Se(l):4p, Zn(2):3d, 
Zn(2):4s, Se(3):4$ Se(3):4p and 
Zn(b):4s 

5.3. Charge lransfer at the boundaiy 

Compared with the atomic orbital population in table 5 for cluster (Mn,Se,Zn,,), 
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Tablc 3. n w  calculated peak positior6. lhe energy gaps and sp bandwidths for clusters 
C, D and E. PI is llle average of SI and 11 (cV). 

Cluster Pili PII 1’1 d E8 Wsp 

ciustcr c -11.14 -4.74 -0.96 -653 2.40 4.88 
Clusar D -10.84 -3.84 -0.67 -6.21 3.12 4.28 
Clusier E -10.71 -4.00 -1.43 -6.28 3.23 4.00 

Table 4. The alomic orbilal population for clusicrs A B and E 

A I3 E 
- .. 

Zn %(I) Zn S(1) Mn %(I) Zn(2) Sc(3) 
. .  ,. ~. 

Charge s 0.75 1.Y2 0.80 1.93 0.30 1.93 0.69 1.95’ 
p - 5.28 - 5.22 0.21 5.21 - 5.32 
d 9.99 - Y.Y9 - 5.38 - 9.99 - 

1.26-1.20 1.21-1.15 1.14-1.14 1.32 -1.27 
-2.85 -2.73 5.10 

8: 
Q:, 
Q ~ Q J Q .  0.95 0.91 1.70 

called old A hereafter, and charged clustcr (MnlSe,Zn,,)’dt, which ignores the 
environmental potential, called old B hcrealtcr, the effective charges Q: of clusters 
A, B and E in table 4 arc very homogcncous. This reaches one of the goals of 
this work: homogeneous charge distribution of the same spccies of atoms and the 
cancellation of the valence charge ol’ anions with that of cations. But the charges 
transferred at the boundary listcd in table 5 lor clusters A, B and E are quite different. 
There are 3.15 and 3.27 charges transl’crred lor clusters A and B, respectively, while 
there are only 0.9 charges transferred lor clustcr E. The one boundary shell (12 Se) 
less in clusters E and D, which accounted for the small charge transfer, drastically 
increases the band gaps and decreases l,Vsp. The narrower WSp and wider band gaps 
indicate weaker covalency in just the same way as the band gaps increase from 1.12 eV 
of Si in IV semiconductors, which is completcly covalent crystal, to 3.80 eV of ZnS 
in 11-V semiconductors. The impor t ”  of charge transfer at the cluster boundary 
for the right imitation of partial ionic crystals by a clustcr is strongly displayed in this 
work. 

Tal&- 5. Thc atomic orbi t i l  populalion lor cluslets old A and old R 

Old A Old B 

Mn %(I) Zn(2) Mn Sr( l )  Zn(2) 
. . ,, ,, ~~~ 

. ,, 

Charge s 0.33 1.95 0.39 0.43 1.95 0.27 
p 0.17 4.76 - 0.29 5.02 - 
d 8.28 - 9.97 5.32 9.99 

Q t  1.22 -0.71 1.63 0.98 -0.97 1.74 

It is difficult to say whether the charge transfcr or the embedding charge should 
be blamed for the unreasonahlc distribution of DOS in the old A cluster. These two 
factors are inter-entangled. Howcvcr, considering the fact that the old B has the  right 
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order of peak positions, it seems that a too strong environmental potential due to the 
ideal embedding charge tends to give an unreasonablc DOS distribution. Insufficient 
charge transfer tends to cause poor peak positions, band gaps and band widths. 

5.4. Mn in &Se 

The DOS and energy levels in figure 3 show that Mn forms highly localized impurity 
states within the band gap about 2.5 e V  above the valence band maximum. The t state 
is above the e state, which is governed by the T, symmetry. The composition of the 
impurity states in table 6 indicates that the e state has more Mn:3d character while the 
t state has less Mn:3d character duc.to strongcr interaction with host semiconductor 
states. Numerically, the population numbers on the atomic orbital for cluster E are 
near that for old B. But E, - Ee is Par smaller than the results from the old method. 
People usually compare E, - .Ee encrgy with the crystal splitting energy lODq in the 
crystal-field theoly, which is 0.54 eV (Langer et a1 196G). But we do not think there 
is this equivalence. lODq in the crystal-lield theory is the cncrgy splitting between e 
and t states under the crystal field with no e-e interaction within d states, while in 
the mean-field theory all intcractions, including t h e  field produced by the electrons 
in localied states like Mn:3d, arc considcrcd. For the localized states, the electronic 
configurations and occupations have a large influcncc on the results. For example, in 
the spin-polarized calculations, the cncrgy difference between t and e states can be 
twice as large as that from spin-restricted calculations. So the smaller E, - E, does 
not mean a poor resutt. 

Table 6. The population compositions on lhe impurity arbilals (percenlage). 

E Old A Old U 

e t  c i  e 1  

Mn:3d 87.3 68.8 85.2 61.2 8S.S 68.9 
sc4p  9.1 10.Y 14.3 26.2 10.9 17.8 
Zn:3s 2 9  9.1 0.4 4.4 0.6 4.0 
Et - E. 0.21 0.46 0.46 

The replacement of Zn by M n  does not have a large effect on the  host band. 
Comparing the DOS of cluster E in figure 3 with that of cluster D in figure 2, which 
is the replacement of central Mn ol cluster E by Zn, we find that Mn:4s has weak 
hybridization with host atoms but strong charge transfer to the host atoms, which 
forms the Mn:4s peak in the higher part of the conduction band. The stronger 
ionicity accounts for the wider band gap and narrower Wsp. 

6. Conclusions 

There are charge-transfer and self-consistent environmental potcntial problems for 
the cluster imitation of a partial ionic crystal such as 11-VI semiconductors. After 
the charge-transfer method is suggested to cut off the boundary barrier to charge 
transfer, results comparable to the band-structure calculations are obtained with a 
smaller cluster, which is often thought impossible for cluster calculations. The right 
chemical trend from ZnSe to ZnS, the small size effect, the smaller gaps consistent 
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with the restriction of LDF formalism and the right distributions of DOS all indicate 
some success of the charge-transfer method for the ZnSe and ZnS system. Since good 
results are achieved even with no consideration or the dangling-bond problem in this 
work, it is argued that charge transfer  is the more important factor, which causes 
the size effect and DOS distribution problem for stronger ionic crystals such as ZnSe 
and ZnS. The small size effect and right distribution of DOS and PDOS shed light on 
the solution to the drawbacks of thc cluster mcthod. The drawbacks (i) and (ii) in 
section 1 are problems of the size cffcct, which is at least not large in the charge- 
transfer cluster method. Although cluster calculations can only get discrete levels, 
the right DOS and PDOS distribution combincd with the molecular-orbital diagram can 
facilitate knowledge about the bonding properties even in band continua. In principle, 
the charge-transfer cluster methcd can be easily applied to other cluster calculations. 
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